Model rigid CR submanifolds of CR dimension 1

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contact CR Submanifolds of maximal Contact CR dimension of Sasakian Space Form

In this paper, we investigate contact CR submanifolds of contact CR dimension in Sasakian space form and introduce the general structure of these submanifolds and then studying structures of this submanifols with the condition  h(FX,Y)+h(X,FY)=g(FX,Y)zeta, for the normal vector field zeta, which is nonzero, and we classify these submanifolds.

متن کامل

Cohomology of CR-submanifolds

© Université Paul Sabatier, 1981, tous droits réservés. L’accès aux archives de la revue « Annales de la faculté des sciences de Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impressi...

متن کامل

1-rigidity of CR submanifolds in spheres

We propose a unified computational framework for the problem of deformation and rigidity of submanifolds in a homogeneous space under geometric constraint. A notion of 1-rigidity of a submanifold under admissible deformations is introduced. It means every admissible deformation of the submanifold osculates a one parameter family of motions up to 1st order. We implement this idea to the question...

متن کامل

CR-submanifolds of Kaehlerian product manifolds

In this paper, the geometry of F -invariant CR-submanifolds of a Kaehlerian product manifold is studied. Fundamental properties of this type submanifolds are investigated such as CR-product, D⊥-totally geodesic and mixed geodesic submanifold. Finally, we have researched totally-umbilical F -invariant proper CR-submanifolds and CR-products in a Kaehlerian product manifold M = M1(c1)×M2(c2) M.S.C...

متن کامل

On the Holomorphic Extension of Cr Distributions from Non Generic Cr Submanifolds of C

We give a holomorphic extension result from non generic CR submanifold of C of positive CR dimension. We consider N a non generic CR submanifold given by N = {N, h(N)} where N is a generic submanifold of some C and h is a CR map from N into C. We prove that if N is a hypersurface then any CR distribution on N extends holomorphically to a complex transversal wedge, we then generalize this result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1998

ISSN: 0030-8730

DOI: 10.2140/pjm.1998.184.43